890 1u, S, Vakhrameev

instant of "landing" of the last grain of sand), When % — 1, any subsequent motion is
absent,

It is important 1o note that all conclusions about the existence of self-similar modes
in the ejection of a medium by gas and, as a consequence, the power law of similarity
expressed by E, ~h* remain valid for auger~hole blasting, even when p / p, and the
effective value of % behind the wave front are not constants, but functions of relative
strain, This follows from dimensional considerations, A similar model is valid, for exam-
ple, for approximately defining an explosion in a sirongly fissured rock taking into
account its gradual transformation into detritus, We would add that the existence of self-
similar modes with expansion of a small cavity does not necessarily require the presence
of a compression jump, An example of this is the expansion of a bubble in an incom-
pressible fluid (the second stage in the Rayleigh problem).

The author thanks E, I, Zababakhin for his useful advice,
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The two~dimensional problem of the flow around an arbitrary contour floating on the
surface of a heavy ideal fluid of finite depth is considered. By using the results .of 1 - 3]
the problem mentioned is reduced by operational calculus methods in Sect, 1 to the
determination of the pressure on the contour from an integral equation of the first kind
with nonregular difference kernel of complex structure dependent on two dimensionless
parameters A and §.
The case of gliding of an inclined plate is studied in detail in Sects,2—~4, An asymp-



The problem of gliding of a plate on the surface of a liquid 891

totic solution of the integral equation obtained in Sect,1 is given in Sect, 2 on the basis
of results in [4], for large values of the dimensionless parameter A and arbitrary 6 =1,
A solution of the integral equation is presented in Sect, 3 for small values of A and § <1
by the method proposed in [5]. Finally, for small values of A, the case of §>1, is consi-
dered in Sect, 4, This latter is singular in the sense that the Fourier transform of the
kernel of the integral equation has two symmetrically located poles on the real axis,
Integral equations with such and more general kernels have been investigated in [6], in
which an asymptotic solution is given for the integral equation for small values of the
parameter } and a foundation is given for the method applied therein, However, the
formulas presented therein are too complicated for practical application, An approxi-
mate solution is presented herein for a given particular form of the kernel of the integral
equation, which is convenient for numerical computations,

Examples are considered in Sect, 5; graphs illustrating the efficiency of the proposed
formulas for the whole range of variation of the parameters A € (0, o) and 81 are
cited,

1, Let us consider the two-dimensional problem of the flow around an arbitrary con-
tour floating on the surface of a heavy ideal fluid of finite depth (Fig.1).
As is known [1, 2], in the linear formulation
M we arrive at the following mixed boundary value

g z .
.—4%”% problem:

v A1z, y) =0, %‘;’2:0 (1.4
S — Pr— po=—pgm (&) — pU ..______Wl;;; ¥) =0

fory =0 2Q

Fig 1 Vi@, )+ UmE)=0 for ¥ =0, EQ

N, y)+UHE)=0 for ¥ =0,z
Here ¥, (z’, y') is the perturbed motion stream function, w; (z’) the equation of the
free surface, #, (z') the equation of the streamlined contour, p, the hydrodynamic pres-
sure, Po the atmospheric pressure, U the stream velocity, p the fluid density, g gravity,

It will henceforth be convenient to locate the origin at the middie of the projection
of the wetted portion of the contour on the unperturbed stream surface and to pass to the

dimensionless variables @ ¥y =1y, ¥, y) = UM () (1.2)

P—pe=pU, [ @E)AHE)N=1n() f(2)]
Here I = AB is half the length of the wetted zone of the plate (Fig.1).
The relations (1,1) can be reduced in the abstract quantities (1.2) to

AY (z,y) =0, ————-a\yéi Y =0 for y=— —?‘
=Yy _ 0¥(z.y) _ =
P T 3 =0, for y=0, [z|>1 1.3y

Y, 0=—f(x) for |z|<<1, A=U“€gl)“

By using the Fourier transformation the formulated problem can be reduced to the
determination of the pressure in the wetting zone p(z) from the following integral equa-
tion; 1
Asin 22 + B cos .E S d % c.?it_(_’_.:'_'.‘l_)_'___d = .

=+ +\pwan \ Se oo dr=nf(z)  (14)

-1 ]
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Here ¢ is a positive root of the equation v cth §v = 1, which always exists for § > 1,
A and B are arbitrary constants and § = ghU-%.

The term outside the integral in the left side of (1, 4) exists only for § > 1 and is the
nonzero form of the free fluid surface in the corresponding homogeneous problem when
the pressure on the whole surface is zero, In this case the arbitrary constants 4 and B
can be selected for the problem under consideration [3] so that the perturbation of the
free surface would vanish upstream (z — — o0).

It is not difficult to show that for this it is sufficient to set

1 1
X s ue
A= —~ma Sp(u)cos %?.du, B=na sp(u)sm ...i...du (1.5)
-3 o §
¢==lim T id

o Tt —1 1-8(d—a
after which we arrive at the integral equation to determine the pressure

Slp(u) {S’% dx — nasin _'i.(:'"_;_.'.“.)_]du=n/(x), lz]<1

-1
where the {nner integral is here understood in the principal value sense, The integral
equation obtained can be written in another form which will be convenient later

1 A
Sp(u)N (’;“)duz«.mm, fz)<t (1.5)
-1
[+-]
_Ct i _Z2ac — . .
N(t)----S(1"“!16_‘.__1 T._c'>cmrtdt na(sinet +sincli))

[}
The integral

]
has been used to obtain this form,

To construct effective asymptotic solutions of the integral equation (1, 6) for large
and small values of the parameter A, let us apply the methods proposed in [4, 5] but
paying special attention to those changes which are connected with the singularities of
the integral equation obtained,

2. Let us consider the case of large A. Following [¢], let us expand the kermnel of the
integral equation (1, 6) in series for large A

N ()=—1n|t]+ as+ ant + ant® +aw|t]|+ an |+ ant® +

dan®ln|t]+ 0t Inft]), t={(z—u)Al 2.1)
00
= 1 e )d‘t om == — nac
a”—S('rcthb'c--i T g !
9
Lsod
3 1 ) {me 1 e D
“zﬂT“-TS[1+‘—2“+“"‘;’“"‘<rcmﬁt——i = gl § L

[}
a.oﬁ—-'-“/z, au.—_-.O.S, a‘g::n/ﬂ, ¢5=mcs/6
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The expansion (2. 1) of the kernel of the integral equation (1, 6) differs from the expan~
sion of the kernel examined in [4] by the presence of the odd members ayht and agt?,
which exert no substantial influence on the construction of the solution, but result only in
additional calculations which need not be considered h[e;;"e]. For the case
we finally obtain — :

Y o@=p@Vi—2, o@= 22 oy (z) A4 Ind A
i==g je=0
Qoo == P 4Bz, 10 ==0"1P [4asyn"2S1 (z) — anz] + 2PBagen [22 - A (2)]

g0 = 7771P {(0.8069a;2 - ase) (1 — 222) 4 320502074 [ S2'(z) — 0.4508] —
—27 %ag0ay; [22 — A (2)]} + B {a132® -+ (ass — 0.1934a1) z — 48aag®n™45, (z)}

Wy w — Pri~lgyg (1 — 22%) — anfix
on = TIP [aysanc ~— 2010020725 ()] ~ 2Bn%axos 142 /3 — A (7))
@30 = 1-1P [0.88897c2a130805s () + Sam (379 |+ 647 *asi?S; () + 2.2
502 [6ags (4 4 22%) ~ 0.13a3:3] §1 (z)4- 7172 [Ia22 + 2 (@92 «+ 0.8069amays)] S¢ (z)—
—as1anz + 168228102025, () — amays (28 —0.1931z) — 3as2®} -
+ B {2120007%8 (z) - 2amanen® [142/3 — A ()] +-
- 3ags (22 — 0.5) — 16as®1~45; (z) + 209872815 (2)), @45 () = 04

where
S, {x) = — 2z (0.8125 — 0.40672% — 0.0624%) + (0.7087 — 0.146722 —
— 0.062%) A (z), §p {z) = —0,025z + 2.6672% — 428, (z) — (2.280 + 2.3
-+ 1.3332%) A (2), Sy () = —9,309z -+ 1.8602® -~ 0.43542%
-+ (3.893 — 1.0922% — 0.2177 z%) A (), Sy (z) = 2.667z + 22* —
— 628, () — 2+ A, AR =1 -2 In(l —2) (1 + 2)7?

and the functions S; (z),.1 = 1, 2, ..., 5 are presented and tabulated in [4],
The constant P in (2, 2) has the meaning of lift of the plate and is determined from
the condition of satisfying the obtained solution of the initial integral equation (1. 6),

The condition has the form
a-1Pgy (M) + By () = y (2.4)
P (A) = asy + 0.8106a50A~1-+ (ass + 6,5 — 0.03287a%0 + 0.5a%1)A-2 +
4 (1.442a4s ~ 0.27020,,620 — 0.4807a50a30 — 0.0245a%0 -+ 0.27024%n4ay,) A2 4
“+In 24 (1 — ap A2 -+ 0.4801a,a,0A7% + O (A~¢In* A)
Py (A) = —0.5amA! — 0.2702az089,2~2 — (1.125ags + 0.27844a,,a3 - 0.5aman -+
4 0.1279a%0a5) A~3 4 0.5a a9 % In A + O (A~* 1n® })

Formulas (2. 2) and (2. 8) yield a solution unbounded at the endpoints z = + 1. If
boundedness of the pressure is required at the point z = {1 (from physical considerations,
there should be no singularity at the plate trailing edge), then we arrive at the following
relationship: n-1PPs A) + B, (M) =0 (2.5)

s (M) = 1 — (0.4033335 + an) A1 & [0y + (a108; + 0.4354a35050) A-1] X
X A2 In A — (ag + 0.8089a;, -+ 0.04954 age® + 0.4053ay4a5,) A-% —
— (3ass + 0.8069a;505 + a3, 85, + 0.2122a5, 050 + 2.161a, + 0.01895a,,0,, +-
~+ 0.1354amayy -+ 0.01a5%) A™% 4+ O (A—4 In%)
$; (A) = 1 + 0.4053a50A"t + (ay;, <+ 0.8069a;, + 0.2122a%) A~* 4 ({.5az
+ 2.1616y + 0.1167a5® + 0.9456a50a9, - 0.6729a3504,) A~ — (g, +
+ 0.9456a59a;,A71) A-2 In A + @ (A~* In?A)
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Let us determine the moment of the pressure relative to the origin
M= Py, (A) + B s (A) (2.5)
Y5 (A) = 1.571 + 0.8488a50A1 + (0.8748ay, + 1.571as; + 0.4017af) A-* +
+ (2.716ay + 1.698259a8y + 0.92318,385¢ + 0.2752a90%) A2 — (1.574ay, +
+ 1.898a;0a00A"Y) A-2 In A 4+ O (A~*1n2 A)
The plate equilibrium conditions, according to which the quantity P can be considered
known and equal to the weight of the plate, must be added to these relations, and
M=P(1— MgU? 2.7
where [, is the coordinate of the center of gravity of the plate relative to the tailing
edge, which can also be considered known,
Conditions (2, 4), (2. 5) permit finding the unknown quantities § and vy which govern
the location of the plate, as well as the length of the zone of contact A which, as is
easily shown, satisfies the equation

by =4 gU= = A1 — 4 (M) + bs Aps () (ipg (M) (2.8
As is seen, the length of the wertted zone is independent of the plate weight and is
determined completely by the position of the center of gravity, Let us still find the total
drag of the plate in an ideal fluid [1]
W= fP = —Plps (A) (py (M) (2.9)
Let us note that the drag is proportional to the square of the plate weight and dimini-
shes as the center of gravity recedes from the trailing edge,

3, Let us consider the case of small A. For small values of the parameter A let us
seek the approximate solution of the integral equation (1. 6) by utilizing the method in
[6]. To do this we take the pressure p (z) in the form

= p (L2 t—zy 3.4
p(x)«pz( )+ (252 -@
where p; (8), i = 1, 2 are the solutions of the Wiener-Hopf integral equations
Q0
S pi@N;j(t —uydu =mh-if; (8}, [=142 osi<e (3.2)
0
N;(®) ,_.S ( = thﬁit T _1-12“63) cos tidy —masine |1} 4+ (— 1) nasinc|¢|
Tothdt — -
0

i =1+ (=18l - (33)

and ¢ (z) is the degenerate solution of the integral equation as A — 0.

As has been shown in [7], and later in [8], the solution selected in the form (3.1)-(3.3)
yields the zero term of the asymptotics of the solution of the integral equation (1, 6) as
A — 0 and § < 1. The next terms are exponentially decreasing of the form exp(—xA-1),
x> >0

The results of [5] can be utilized in the case 8 < 1 for the solution of the integral
equation (1,6) in which we can set @ = 0, hence we arrive at the final formulas

7(2) = (AN (Y +B2), pi()=(ANTy(erf VBt 4
4 B VAT — (—1)1B (AN [(Mt — ) erf VBE+ 3.4
-+ e—B! (J'!Bt)-l/' (At — V;TB + 054 m—- AA)] i=1,9
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An approximation of the form
=+ 0 VEF B, A=BC1l=08(1—8"
was used to obtain these formulas for the Fourier transform of the kernel of the integral
equation (1, 6).

Let us note that a more complex approximation was proposed in [9], which would re-~
flect the character of the Fourier transform of the kernel of the integral equation (1, 6) at
infinity more completely, and would yield a more exact result for the pressure distribu-~
tion, Only the integral characteristics are investigated below, hence the simplest appro-
ximation is utilized which will supply campletely satisfactory results for the examples
considered herein,

Requiring boundedness of the pressure at the point z = 1, we arrive at the condition

v =—Bz (), n M =1+Ar[C?r— (2B) 1] (3.5)

Proceding from (8. 4), we obtain the lift of the plate and the moment of the pressure
forces relative to the origin after simple computations
P=vyu (A, M= Pz} (3.6}
where _
(M) =41 @1+ Vé&/C— B+ (1 — VC/B)* exp (—2BA-Y)
(W) =A10h+ Vi/C—B-)+ 23+ 222 VAP + (1 — VT/BY VB
— 14+ A(B1—b VAP exp (—2BA-Y), b= (2B VA)! — B~ 3.7

Now, utilizing the statics condition (2. 7) and taking account of (3, 5)—(3, 7), we obtain
an equation to determine A
1 zg() Lg
M= v (1 + zl—m(—z;ﬁ)), A= Wi (3.8)
Let us note that, just as the analogous equation (2, 8) obtained for large A, it is more
convenient to solve (3, 8) by constructing graphs of the dependence of A;on A. Deter~
mining 3 by the first formula in (3. 6), we find v for a given P, Then by (3, 5) we find
the slope of the plate as well as the drag W = BP,

4, The case of small A is considered as before, but for § > 1. This latter circumstance
influences obtaining the approximate solution substantially , since the Fourier transform
of the kernel (3, 2) here has two symmetric poles on the real axis, and the kernel itself
does not vanish at infinity (¢t — o). The integral equations of the first kind with kernels
of this type have already been investigated in [6], where the solution is given in com-
plex form, An approximate solution based on the representation of the solution in the
form (3. 1) is presented here,

Let us ransform the integral equation (3, 2) into

[¢ <]
Lijt), 120, j=1,2
: K — — J £ Y, y
SP:(u) (t —u) du { (), t<0, j=12 (4.1)
o
oo
”n 1 2ac N
K(a) = _
@ 5<\rcth or—1 12__62) cos atdt 4.2)
(1]

1
L1 (t) = ad™Y1 (t) + 2ma S}u (uysine (t — u)du (4.3)
0
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o0
La (t) = nh~Ya (8) — ZuaS P (u)sine (¢ — u) du

t
where the integrand in (4. 2) has no singularities on the real axis, It follows directly
from (4.1)—(4. 3) that the unknown functions ; (¢) introduced tend to zero as t — — oco.

Applying the Fourier transformation with complex parameter & to (4.1),(4. 2), we
arrive at the following functional equations:
k(a)

I N (a);r:—- =F1(a)+ Er (@) (4.9)
P2t () o = F3 (&) +—5—3 a’ p [ic Im Ps* (c) + ¢ Re Pa* (¢)] + Es~ (a)  (4.5)
where . o )
+ a 1 ia
@) =5 §p,- (1) £'dt,  Fia) = Vs §f,~ (1) ei*ldr

0
E.‘(a,)=———1_—..—- S 1. @) ei®dt j o= 1 k(@) = @
i Vin A i ’ It acthba —1
and P*j (a) are functions analytic in the upper half-plane Ima > 0 and decreasing as
a-'7r at infinity, and E-; (a) are functions analytic in the lower half-plane Im o < o,
@; > 0. The function k (x) has no poles on the real axis, Let its factorization have the
form k(@) = k* (@) [k (@) (4.6)
where k+ (a) and k- (@) are analytic functions having no zeros in the half-planes
Ima > 0 and Ima < ay, respectively, Let us note that k+ (x) grows as V& at infinity,
while k-(a) diminishes as a-". Let us substitute (4, 6) into (4. 4), (4. 5), and let us
write the funetional equations as

Pyt (@) k¥ (o) = (03 — Nk~ (@) Fy (@) + (a? — 3) b~ (@) E7 (@) (4.7)
Pe* (@) k* (@) = (a2 — eb) k- (a)Fy (@) + 2ak* (@) [iz Im P*; (¢) + ¢ Re P*3 (o)) +
+ (o — ) k- (@)E™: (@) (4.8)

Let us make still another factorization
@ =k~ (@) Fy@)=F@+F @) d=t0
where F;*(a) and F;~(a) are analytic functions in the half-planes Ima >0 and Ima <
<& o, ,respectively, The functional equations may now be rewritten thus

Pity(@) k* (@) — At (@) = Fi(a) + (@' — N &~ (@) E71 (@) (4.9)
P} (a)k* (@) — Fo* (@) = Fy™ (@) + (@® — ¢?) k- (a)Es~ (@) +
+ 2ak~(a) [iw Im P] (c) + ¢ Re Ps* (@)} (4.10)

The right and left sides of (4, 9), (4, 10) are analytic functions in the half-planes
Im ¢ > 0 and Im & < @, , respectively, Applying the theorem on analytic continuation,
and the generalized Liouville theorem, and taking account of the behavior of k¥* (&) and
P;* (@) at infinity, we obtain that the functions identically equal the constants C; and
C, .Furthermore, we have Ci+Fr @) Ci— Fr=(a
. . - - )
P *(a) = "l—]‘f_(i_)__ ==1,2), By (o) = (a:_. P k(@)

— Fy~ (@) — 2k~ (@) [{a Im Ps* Re Ps* ()]
Ba () = 2= (@) a(ai(ci)_w _(d; () fcRePy (4.11)
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On the basis of the above regarding the behavior of the function I; (t) as ¢z —» — oo
we conclude that the functions E; (#) shouid have no poles on the real axis, This results

in the conditions
Ci—=F(+e)=10, Co— Fom (4= ¢c) — 2ack~ (- ¢) Ps* () =0 14.12)

The second of conditions (4.12) is satisfied identically by virtue of (4. 11), which permits
setting C, = 0 (the boundedness of the pressure at the point of convergence z = 1).
The first condition of (4.12) defines €, and, besides, imposes specific requirement on the

function f (z).
In the case under consideration, assigning the functions f; () by the expressions (3, 3),

wehave M — o (1) (M —a) Bk (0) —irak (0) A (=) [k~ (O ia] @19
Py* (o) = Vom k* (o) aik )
where

G=—=pk(0), C=0 (=P O+ Bl (O0)Ar=0 (4.14)
The last condition in (4, 14) is indeed that requirement which the function f(z) should
satisfy ; it determines the connection between ¥ and .
The solutions p; (¢) of the integral equations (3, 2) are determined from (4,13) by a
Laplace inversion, We shall hence utilize the approximation

o2 — o2 at + D? DB Sct
k)= i1 =TF@ VP+F, A= "m =5—7>0

which results in the following expressions:

~Bt C—D —
p; (t)——-Cj [LV-;T-‘-VFB—ﬁGﬁm erf V(B—D) t] + (4.15)
@ —1) c—D) VA N
+7[<—1)’ﬁs+ ks )BM(DVB_%_" eDlort VB =Dyt~ erf VEZ:I+
2 _ —
-}-(—1)5%1— [(z +e)erf VBi+ ]/ ﬁie—Bt + ;—-g—‘/—(p_é)_TV_,_?i)-e'm erf 'V(B—D)l:l
1 1 i 8
t=F — T — 5 C’=_ﬁ" T=B(l+eh), C3=0

It is not difficult to obtain the degenerate solution from (4.15) for A - 0, We have
g (z) = = c® (AN (y + Baz) (4.16)

In combination with (3, 1), formulas (4, 15), (4. 16) determine the desired pressure p (z).
Let us find the lift P, and the moment M relative to the origin acting on the gliding

plate P = — B (W), M = P, (A) (4.17)
@1 (A) =RA7 1 (A) — 2 (A)] 4 2¢3(AA)"1 (1 + eh) [— 1 + (2 + Ae) w1 (A) +
+ V257 aB exp (— 2BA™Y) + AD"1 x5 (A)] (4.18)

P2 (M) = —2c2A7 {z (M) [*sh + & + A (€2 — Vac®) 4 A% (02 — £ [ 2¢%)] —
—Ysh — DM (M) [1 A (e + 2D71 4 D/ 2% + A2 (€D + D72  Y3e¥)] +
+ VZ(AaB) 7 exp (— 2BA™) [Vs + & (e — V/sB) + A2 (61 — Yac)) ]}, %1= erf V2BA1

e D ——
_€—pV4a - ]/2(3~D) e C=D 1
= oVve—p ¢ =V Ti . 9=+ -—Tomr —IF

6= (C — D) D*C™? — 2 (2B)™! — ¢ (4B?)™1 4 (8B°%)™1
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Analogously to Sect, 2, the equilibriumn condition for the plate must be added to the
relationships (4.17), (4.18); then we obtain for the determination of the quantity A

M= LgU-3= A1+ g A/ 9 M) (4.19)
Let us find the drag experienced by the plate
=— P/ g ()

The case § = 1 cannot be considered on the basis of linear theory,

As an illustration, let us present some resuits of calculations for the cases § = 0.5
and § = 2. It turns out that the value of the moment relative to the origin and the lift
coefficient obtained by both methods for 6 == 0.5 differ by 6% and 2% for A=3.5 ,
respectively, and by 4% and 3%, respectively, for § = 2 andA = 2,5 ,

Let us note that the distance of the center of pressure from the trailing edge of the
plate tends to 4/l for A —~ O inthe case § < 1 and to 3/5! as } - O for the case § > 1,
Let us note that although the authors have not yet succeeded in providing a rigerous
foundation for the method proposed in Sect, 4, as has been done, say, in the fundamental
work of Babeshko [6], the numerical results show that the zero term of the asymptotics

obtained for small A in Sect, 4 is sufficiently effective,

In conclusion, the authors are grateful to V, M, Aleksandrov, I, I, Vorovich, V, A, Ba~
beshko for continued attention to the research,
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