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instant of “landing” of the last grain of sand). When k + 1, any subsequem motion is 

absent, 
It is important to nom that all conol&om about the existence of self-sim$lar modes 

in the ejection of a medium by gas and, as a contrrqirence, the power iaw of similarity 
expregtd by E, -ha remain valid for auger-hole blasting, even when p / p. and the 
effective value of x behind the wave front are not constan& but functions of relative 
strain, This follows from dimensional considerations. A similar model is valid, for exam- 
ple, for ap~o~rna~~ d&n&g an explosion in a strot@y fissured rock taking into 
acwunt its gradw~l ~~f~rna~ into deuims. We would add that the existence of self- 
similar modes with expansion of a small cavity does not ~~r@lufre~puence 
of a commion jump. An example of this is the expansion of a bubbk in tin Worn- 
pressibk fluid (the second stage in the Raylnigh problem). 

The author thanks E. I, Zababakhin for hia useful advice. 
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The tw~dimensional probkm of the flow arourui an arbitrary contour fleating on the 
surface of a heavy ideal fluid of &rite depth ts oomidered. By using the results .of 0 - 33 
the pa&km ~nt~d is reduced by operational calculus methods in Sect. 1 to the 
determination of the pressure on the contour from an integral eguatiotr of the first kind 
with nwgulnr dif&wnce kernel of complex s~wcture dependent on two dimensionless 
parameters A and 6. 

The case of gliding of an inclined plate is studied in detail in Sects.2-4. An asymp 
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totic solution of the integral equation obtained in Sect. 1 is given in Sect. 2 on the basis 
of results in 143. for large values of the dimensionless parameter A and arbitrary 6 # 1. 
A solution of the integral equation is presented in Sect. 3 for small values of 5 and 6 <l 
by the method proposed in [KJ. Finally, for small values of 1, the case of 6 >l. is consi- 
dered in Sect, 4. This latter is singular in. the sense that the Fourier transform of the 
kernel of the integral equation has two symmetrically located poles on the real axis. 
Integral equations with such and more general kernels have been investigated in @), in 
which an asymptotic solution is given for the integral equation for small values of the 
parameter 1: and a foundation is given for the method applied therein. However, the 
formulas presented therein are too complicated for practical application. An approxi- 
mate solution is presented herein for a given particular form of the kernel of the integral 
equation, which is convenient for numerical computations. 

Examples are considered in Sect. 5 ; graphs illustrating the efficiency of the proposed 
formulas for the whole range of variation of the parameters J. E (0, 00) and S # 1 are 
cited. 

1, Let us consider the two-dimensional problem of the fIow around an arbitrary con- 
tour floating on the surface of a heavy ideal fluid of finite depth (Fig. 1). 

As is known [l, 21, in the linear formulation 
we arrive at the following~mixed boundary value 
problem: 

AYI(z',~'~= 0, ayl($;,- '1 = 0 (1.1, 
- 

p1- po= - pgql (2') - pu WI (t’* y’) 
aY’ 

=o 

for y’= 0, 2’ E 51 

Fig. I Y1(5',y') + Uqt(z')= 0 for Y’== 0, 2’ E Q 

Y115',y') + Ufl(Z') = 0 for ?I = 0, 2’ E Q’ 

Here I, (2’. Y’) is the perturbed motion stream function, rn (t’) the equation of the 
free surface, fr (z’) the equation of the streamlined contour, p1 the hydrodynamic pres- 
sure, PO the atmospheric pressure, U the stream velocity, p the fluid density, g gravity. 

It will henceforth be convenient to locate the origin at the middle of the projection 
of the wetted portion of the contour on the unperturbed stream surface and to pass to the 
dimensionless variables (z# Y,l = I (= yl ’ = uw (x y) (f-2) 

PI - Pi = PUPP, ’ I;, (27 ::‘LY = 2 Iq (i f (z)] 

Here I = AB is half the length of the wetted zone of the plate (Fig. 1). 
The relations (1.1) can be reduced in the abstract quantities (1.2) to 

Ay @, Y) = 0, @P (2, II) aZ =O for y=-+ 

P - Y(5, ?I) ay (2, ?/I 
li aY 

-0, for Y=O, Ix I > i (1.3) 

Y(z,O)=--f(z) for Isl<l. h=Pigl)-r 

By using the Fourier ~ansformation the formulated problem can be reduced to the 
determination of the pressure in the wetting none ~(3) from the following integral equa- 
tion : 

Asin? +Bcos~ (1.4) 



Were c is a positive root of the equation z cth & = 1, which always exists for 6 > 1, 
A and B are arbfaaty constants and 6 = ghu-‘. 

The term outside the integral ia the left side of (1.4) exists only fat 6 > i and is the 
nonzero form of the tit fluid surface in the cotreaponcling homogewus pm&m when 
~e~~~ewho~s~a~~~ ~~~~~i~~~rn~~ Aand B 

can be sekctcd for the problem u&et fam&tewtim f3] so that the perrurbation of the 
ket surface would va&h uptream (Z + - 4. 

It is not difficult to show that for this it is sufficient to set 
1 1 

A=--na 
s 

p(u)cos Fdu, B=nn ‘p(u)sin $Ldu 
I 

(1.5) 
-1 -1 

c 

1 - 6 (3 - c*f 

after which we arrive at the integral equation to determine the pressure 

whete the fnnu integral is here unW%ood in the principal value sense. The integral 
eqt,uxUon obtained can be atten fn another form which will be cunvenient later 

The integxal m 

s !a 
““: dr=- -&sinlbl 

%- 

has been used to obtain tWoform. 
To oonsttuct effective arymptoUc solutfant of the integN equatiw (1.6) %x laege 

and small values of the purmetez i , let us apply the methods propo& ia f4,5] but 
paying special attention to those change& which ate connected with the s&@ar&es of 
the inagral equation obtained. 

1, Let us considet the case of laxge L Following @f. let us expand the kemel of the 
integral equation (1.6) Sn series for large % 

N It)--- - Inltl+aso+%~t+ant’+aaltI+oaItl’$.~~’+ 
+dlrEln~t~+O(rlnItI), t---(z--)~-l (2.1) 
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The expansion (2.1) of the kernel of the integral equation (1.6) differs from the expan- 
sion of the kemel examined in [4] by the presence of the odd members a& and +rt’, 
which exert no substantial influence ou the ~~uuc~on of the solution, but result only in 
additional calculations which need not be considered here, For the case 

we finally obtain s VlPl 
9) (2) = p (z) y/i_ u,(z)= 2 2 osij(z)h-*laQ 

i=o j=-0 

@Ml = X-v + /3z, 010 = Yc-rP [4a&c-sSl (z) - OSlZl + 23usoc5 [ 22 - A (2) J 

asfj” n-‘P ((0.8oBgO~2 +as$(i-2zs)+32a&-’ (sz'~2)-0;1508]- 
-W[zz-h(z)]~ +p{ulsa++(Iza%- O.i93ials)s - i6a~~r*s~(z)) 

op - - 2%%1*(i - 2q - u&r 

OlfJ - at-v [0.~9~~~2 (r) + se22 (3lr2) I+ 64ss~esoaS~ (z) + (2.2) 

+n-s [6% (i + 22%) - O.l’Jar?I $1 (t)+ Je pa22 + 2 (822 + 0.3069UsM~S)l s4 (t)- 

-4sraaa.z + 16~r’ua1a&S7 (2) - aslerrd (28 -O.i’9312) - 3aases} + 

+ 3 jWWt-%3 (2) + 2osrasiP fW3 - A @)I + 

+ 3ass (22 - 0.5) - i6@&tdS@ (t) + 2&SJPSllJ (2)), Oij (2) a W{ j 

where 

S, (S) J - 22 (O.Si25 - 0.1067251 - 0,06z’) + (0.7067 - 0.14679 - 
- 0.06~‘) A (z), Ss (s) = -0,025~ + 2.66728 - 4x& (2) - (2.230 + (2.3) 

+ 1.33325) A (a), s, (I) = -9,309x + 1.86Ots + 0.4W + 
_t (3.893 - 1.092~’ - 0.2177 5’) A (r), S,, (z) = 2.6672 + 2zs- 

- 6,&r (z) - (2 + a+) A (t), A (if = (1 - 9) ln (1 - 2). (1 + 2)‘.’ 

and the functions Si (t),. 1 = 1, 2, . . . . 5 are presented and tabulated in 143. 
The Constant P in (2.2) has the meaning of lift of the plate and is determined from 

the condition of satisfying the obtained solution of the initial integral equation (I. 6). 
The condition has the form 

x-‘Pg, (N + 392 (A) = Y (2.4) 
tpr (A) =e us0 + 0.8106a,,,~-1-t (us + u,,l - O.O3287a% + 0.5aW.-’ + 

+ (1.442% - 0,2702pisu,o - O.i807a+z~ - 0.0245~~80 + 0.2792rrzm+,) k-a + 
-j- In w (i - +,%--2 + o.~so~~*~~~-*) + 0 (k-‘ln’ n) 

$s (Q = -_O.5a&-r - 0.2702as~,k-2 - (1.125as + 0.2784%sau -t O.Stian i- 
+ 0.1279&& h-8 + 0.5~+~h-~ In k + 0 (k-’ In2 ?k) 

Formulas (2.2) and (2.3) yield a solution beaded at the endpoints x =t f i. If 
boundedness of the pressure is required at the point z 9: 1 (from physical considerations, 
there should be no singularity at the plate trailing edge), then we arrive at the following 
relationship : +Ap, P4 + B *4 (V = 0 (2.5) 

tps (A) = 1 - (0.40534~ + RiJ k-r -k Ia12 + (@izIlgl + o*i~5~~*~~) h-11 x 
x k-s In k - (aen + 0.8069ar, + 0.04954 are” + 0,4053c+,a,,) h-l” - 

- (3%~ -I- 0.8069~,s& + aslaM -I- 0.2122as,aso2 + 2.16k, + 0.0i895q2as0 + 
+ 0.1351afilas, + O.Oia&) ha + 0 (h-4 Ins&) 

94 (A) = 1 + 0.4053~,&-’ + (ass + ~.8069~2 + 0.2f22u,#) L-2 + (l.5ars + 
+ 2.161% + O.fi67ad + 0.9456+,aW + 0.672~,us,) k-s - (ar2 + 

+ 0.9456$,&-1) h-2 In I + Q (h-4 InsA) 
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Let us determine the moment of the pressure relative to the origin 

M = ptps (A) + B %, &I (2.6) 

9,s PI = 1.571 + O.&&88a&-’ + (0*8748lzl, + 1.571a3, + 0.4017a&) AJ-s + 
+ (2.7fB&, + 1.698a,~~ + 0.923~u~*~~ f 0.27~2~~~~ X-s - (1.575~ + 

+ 1.698aI,a&-‘) A-” In h + 0 (h-’ hia A) 

The plate equilibrium condftions, according to which the quantity P can be considered 
known and equal to the weight of the plate, must be added to these reiatiom, and 

M = P (1 - &?u-? (2.7) 

where 4 is the coordinate of the center of gravity of the plate relative to the trailing 
edge, which can also be considered known, 

Conditions (2.4). (2.5) permit finding the unknown quantities p .and y which govern 
the location of the plate, as well as the length of the zone of contact k which, as is 
easily shown, satisfies the equation 

& = 1, gu-= = li;-I fi - 9% 61 + 9, N% &I 0% (~~~-‘I (2.8) 

As is seen, the length of the wetted zone is independent of the plare weight and is 
determined completely by the position of the center of gravity. Let us still find the total 
drag of the plate in an ideal fluid El] 

W=/3P= -P’pl, (A) mP4 (VFX (2.9) 

Let us note that the drag is proportional to the square of the plate weight and dimini- 
shes as the center of gravity recedes from the aaillng edge. 

3, Let us consider the case of small A. For small values of the parameter A let us 
seek the approximate solution of the integral equation (1.6) by uti’ifzing the method in 
[5]. To do this we take the pressure p (a~) in the form 

where pi (t), i = 1, 2 am the solutions of the Wiener-Hopf integral equations 
m 

s 
Pj(U)Njjl -Z4)dU =d+-lfj(tl, i-i,2 OGf<aJ (3.2) 

0 

00 f 2ac 
Nj (t) = \rcth&r-$ -?==? 

cas rtdr -~nas~~c~f~+(-_)jsrusincftI 

0 

f j (t) =f J+ + (- i)j B (i - kt) (3.3 ) 

and q (z) is the degenerate solution of the integral equation as I, -t 0. 
As has been shown in c], and later in [8], the solution selected in the form (3.1)~(3.3) 

yields the zero term of the asymptoticr of the solution of the integral equation (1.6) as 
A. - 0 and 6 < 1. The next terms are exponentially decreasing of the form exp(-x3L-I), 
K>E>O. 

The results of [5] can be utilized in the case 6 < 1 for the solution of the integral 
equation (1.6) in which we can set a = 0, hence we aaive at the final formulas 

P @I = fJN-1 (r + W‘ pi (t) = (Ah)“’ r (srf 1/ Bt + 
+ ,-BI i/Z)- (- i)‘P (AS)-’ [(?A - 4) erf VP+ (3.4) 

+ ,-nt (nBt)_“1 (A!6 - V)/AB + 0.5 I VYV - hA)] (i = 1,2) 
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An approximation of the form 

(rZ + C)-r i/z2 + Ba, A = BC-’ = 6 (1 - 6) -1 

was used to obtain these formulas for the Fourier transform of the kernel of the integral 
equation (1.6). 

Let us note that a more complex approximation was proposed in [9], which would re- 
fleet the character of the Fourier transform of the kernel of the integral equation (1.6) at 
infinity more completely, and would yield a more exact result for the pressure distribu- 
tion. only the integral characteristics are investigated below, hence the simplest appro- 
ximation is utilized which will supply campletely satisfactory results for the examples 
considered herein. 

Requiring boundedness of the pressure at the point z = 1, we arrive at the condition 

Y = -Bsl (QV al (h) = i + h [C-1 - (ZB) “1 (3.5) 

Proceding from (3.4), we obtain the lift of the plate and the moment of the pressure 
forces relative to the origin after simple computations 

JJ = Y% (Q, M = Baa (A) (3.61 
where 

4 (V = A-l (W-l + m - B-l) + (1 - Jf?? / B)’ erp (--2B3c-1) 

aa Q) = A-r I?/&+ flC -’ B-l) + 2W + 2Aa v/x [V + (1 - l/z/B)%/ m] 

- [i + h (B-1 - b vx)]% exp (-2281-r), b = (2B m)-r - B-‘/a (3.7) 

Now, utilizing the statics condition (2. ‘7) and taking account of (3.5)-(3.7). we obtain 
an equation to determine I 

(3.8) 

Let us note that, just as the analogous equation (2.8) obtained for large X, it is more 
convenient to solve (3.8) by constructing graphs of the dependence of I.r on 5. Deter- 
mining 1 by the first formula in (3.6). we find Y for a given P. Then by (3.5) we find 
the slope of the plate as well as the drag W = BP. 

4. The case of small X is considered as before, but for 6 > i. This latter circumstance 
influences obtaining the approximate solution substantially , since the Fourier transform 
of the kernel (3.2) here has two symmetric poles on the real axis, and the kernel itself 
does not vanish at infinity (t -+ OO). The integral equations of the first kind with kernels 
of this type have already been investigated in [S], where the solution is given in com- 
plex form, An approximate solution based on the representation of the solution in the 
form (3.1) is presented here. 

Let us transform the integral equation (3.2) into 
Co 

c Pj (4 K (t - u) du = Lj(4, l>,O, j=i,Z 

0’ lj Ct) 9 t<o, i = 1,2 

K(a) = 1 
,rcth6r-1 rZ-cz 

0 

LI (t) = rch-ll~ (t) + 2na 
s 

~1 (u) sin c (t - u) du 

0 

(4.1) 

(4.2) 

(4.3) 
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m 

LI (t) = ~-O.-~fr (t) - 2no 
s 

fi (u) sin c (t - u) du 

t 

where the in-d in (4.2) has no singularities on the teal axis. It follows directly 
from (4.1)-(4.3) that the tino~n fw~tions lj (t) introduced tend to zero a~ t -b--C%. 

M’W’g u Fw uansbmation with compbx param4s8r a to (4. l), (4.21, we 
atrlve at the f-g fUnctiona equptioaJ: 

pl: (a) ,-& = PI (a) + El- (4 (4.4) 

k (a) 2a 
P2+(a)m=F==W+,, t ia Im PI+ (c) + c Rf3 PI+ (C)l + Es- (a) (45) 

where co Lx 

Pj+ (a) = * o Pj (t) eiardt, 
s 

Ff (a) = & o fj (t) @tdt 
s 

0 

Ej- (a) = & _ Zj (t) @dt, 
s j -9 1. 2, k (a) = a o~~~ac~ i 

and p+j (a) ate fuIlCtions analytic in the uppet half-plane Ima > 0 and dectea&g as 
a-“* at infinity, and E’j (a) am fbmtiom malytic in the lower half-plane Im a <‘a,, 
% > 0. Tb fwlction k (a) has no poles on the real axis. Let its factorieatlon have the 
form k (a) = k+ (a) [k- (a)]-l (4.61 

where k+ (a) and k- (a) are analytic functions having no zeros in the half-planes 
Im a > 0 and Ima < &, rejpcctively. Let us note that k+ (a) grows as 6; at infinity, 
while k-(p) diminishes as a-“s. Let us substitute (4.6) into (4.4), (4.5). and let us 
write the functional equations as 

PI+ (a) k+ (a) = (aa - cl) k- (a) F% (a) i- (as - 2) k- (a) E-1 (a) (4.7) 
Pa+ (a) k+ (a) = (a* - 9) k- (a)F, (a) + 2uk’ (a) [ia Im P+r (c) + c Re P*r (c)l + 

+ W - 9) k- (a)E’2 (a) (4.61 

Let us make still another factorization 

(as - c’) k- (a) Pj (U) = Fjt (a) + pj- (4 (I- L 0) 

wk Pi+(a) and Pi’(a) ark at~lyti~ funoclont in 9 half-planes ~EWZ >o ;tnd Im Q < 
< a,, tespectively. The. fknctiunal equada may now be nwtitten thus 

Pl+i(a) k+ (a) - pi+ (a) = F-X (a) + (a’ - 4 k- (a) E-1 (a) (4.9) 

Pi (a)k+ (a) - F~+ (a) = pa- (a) + (a2 - 9) k- (4E2 (4 f 

+ 2ak-(a) [ia Im P: (c) -i- c Re Pa+ (c)l (4.10) 

The right and left sides of (4.9). (4.10) are analytic functions in the half-planes 
Im a > 0 and Im a < a,, respectively. Applying the theonm on analytic continuation. 
and the generalized Lbwille tltecxem, and taking account of the behavior of k+ (a) and 
Pj” (a) at infinity, we obtain that the functions identically equal the constants C, and 
C, .Furthermore. we have C +Fj+(a) 

Pj+(aJxs* (i-l, 31 

ES- (a) = 
CI - PI- (a) - 2sk- (a) lia lm Pt+ (c) + c Re Pr+ (41 

P’ - 3 k - (a) 
(4.11) 
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On the basis of the above regarding the behavior Of the fuIXtiOn lj (t) as t 4 - oo 
we conclude that the functions Ej- (t) should have no Poles on the real axis. This results 
in the conditions 

Cl - Fl- (f c) = 0, Cz- Fz- (f c) - 2mk- (& c) Pa+ (fc) = 0 (4.32) 

The second of conditions (4.12) is satisfied identically by virtue of (4. ll), which permia 
setting cs = 0 (the boundedness of the Pressure at the Point of convergence 2 = 1). 

The first condition of (4.12) defines C, and, besides, imposes specific reqnimment on the 
function f (2). 

III the case under consideration, assigning the functions fj (t) by ,the expressions (3.3), 
we have 

P j+ (a) = 
hiCtzCj_ Oz [(--i)j (hi - a) pk’ (0) -iyak- (0) + 3. (-if [k- (0)’ ia] 

1/S k* (a) a% 
(4.13) 

where 
c, = - Pk- (O), C% = 6, (Y - 5) k- (6) + 18 fk- (OH A = 0 (4.14) 

The last condition in (4.14) is indeed that requirement which the function f(2) should 
satisfy; it determines the connection between y and fi. 

The solutions Pj (t) of the integral equations (3.2) are determined from .(4.13) by a 
LaPlace inversion. We shall hence utilize the approximation 

k (a) = 
ae - c2 

uoth6a-1 

which results in the following expressions: 

cm erf VC’(s - erf ‘i/iii + 

I 
1 i 1 

*=-----, 
P 

C D 2B c*=-v, r=P(i+eh), c¶=o 

It is not difficult to obtain the degenerate solution from (4.15) for h ti 0. We have 

P (5) = - cs (4V (Y + FM (4.16) 

In combination with (3. l), formulas (4. X5), (4.16) determine the desired ~ressurep (2). 

Let us find the lift P , and the momentAI relative to the origin acting on the gliding 

Plate P = - Bcp, WV Jf = BQ (1) (4.17) 

qQ(h)= Lc'[x1(h) --2@)1+2c~@A)-'(~ +eq[-- + p+le)xl(h)+ 

+ 1/L!A / nB exp (- 2Bh-9 + LD’1 ~a (A)] (4.i8) 

Vpz (A) = - 2c2AS1 (XI (h) [%/EA + e + A (e2 - */2cz) f A2 (~32 - e / 2cs)] - 
- %J. - D%Q (X) [I + h (e + 20-l + D / 2~2) + 1L2 (ED-~ + D-8 + +a)] + 

+ v2 (XnB)-1 exp (- 2B31-l) [l/s + h (e - l/d?) + li2 (aI - l/z~2)]), x1 = erf JFGV7 

6s = (C - D) D-W” - e2 (ZB)-1 -e (49)’ + (8Bs)-l 
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Analogously to Sect. 2, the equilibrium condition for the plate must be added to the 
refation~hips (4.1’7). (4.18) : then we obtain for the determination of the quantity h 

x, = I,@-’ = A-’ if + (pa (h) / q1 &)I (4.iY) 

Let us find the drag experienced by the plate 
w5- P* I q+ (k) 

ThecaSe I cannot be considered on the basis of linear theory. 
As an illustration, let us present some results of calculations for the cases 6 = 0.5 

and 8 = 2. It turns out that the value of the moment relative to the origin and the lift 
coefficient obtained by both methods for 6 = 0.5 diffw by 6% and 2% for h = 3.5 , 
mspectively, and by 4% and 3%. respectively* for 6 = 2 and I = 2.5 . 

J.&t us nose that the distance of the center of pressure from the trailing edge of the 
plate tends to ‘fst for h r,Ointhecase6<1andto pf,I as 1,-,Ofwtbecase6>1, 

Let us note that although the authors have not yet succeeded in providing a rigorous 
foundation for the method proposed in Sect. 4, as has been done, say, in the fundamental 
work of Babe&k0 p], the numerical results show that the zero term of the asymptotics 
obtained for small k in Sect 4 is sufficiently e&ctive. 

In conclusion, the sWh01-s arc grateful to V. M. Aleksandrov, I. L Vorovich, V. A. Ba- 
beshko for continued attention to the research, 
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